Chapter 7:  Techniques of Integration 

Section 7.1:  Integration by Parts
SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Find the indefinite integral using integration by parts technique

Find the definite integral using integration by parts technique

Vocabulary:  

Integration by Parts – an integration technique that sometimes helps to simplify hard integrals
Key Concept:       
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See pg. 475 for the basic integration rules that we should be familiar with so far….

Integration by Parts
The product rule states 
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Therefore,
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Generally, we start with
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.  This is the rule called Integration by Parts.

Examples:
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we need to write this in the form u dv 


If we let u = x and dv = cos x dx, 

                   then du = dx and  v = sin x

So 
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You can check your answers by taking the derivative!
Generally, we want to choose u so that taking its derivative makes a simpler function.

Examples:  
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[image: image1.emf]Integration by Parts

• Similar to the Product Rule in Differentiation

∫

u dv= uv –

∫

v du

Used to make integrals simplier

Strategies to use integration by parts

1) Use derivative to drive a polynomial function to zero

2) Reduce polynomials to get a u-substitution

3) Use derivative to get the original integral

And the simplify using addition/subtraction


See example 2 on page 477.  This shows 
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Repeated Integration by Parts

Perform integration by parts until the integral you began with appears on the right or you get to a point that you can use a basic integration rule.  Then add or subtract accordingly and then multiply or divide.

Example: 
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More Examples:
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Definite Integration by parts…
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combine this formula with the fundamental theorem of calculus, assume 
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example:
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Tabular view of repeated Integration by Parts

If you have a polynomial as one of the two factors in a integration by parts problem, then the following is a short cut to solving the problem.
Steps:

1. Draw a 3 column table and label the first column “Dif” and the third column “Int”

2. Put p(x) (the polynomial) in the first column and differentiate it until you obtain 0

3. Put f(x) (the other function) in the third column and integrate repeatedly until you reach the 0 in the first column

4. Draw an arrow from the Dif column to the row below it in the Int column

5. Label the arrows, starting with “+” and alternating with “-“

6. From each arrow form the product of the expressions at the tail and the tip of the arrow and multiply that expression by “+”1 or “-“1 based on the sign on the arrow

7. Add the results together to obtain the value of the integral

Example:
Find the integral of ∫ (2x³ - 7x² + 3x – 4) ex dx
	Dif
	
	Int
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∫ (2x³ - 7x² + 3x – 4) ex dx  =  (2x³ - 7x² + 3x – 4) ex – (6x² - 14x + 3) ex + (12x - 14) ex – (12) ex
                                            =  ex [(2x³ - 7x² + 3x – 4) – (6x² - 14x + 3) + (12x - 14) – (12)] 

                                            = ex [(2x³ - 13x² + 29x – 33)

Note that lots of work in setting up ‘u=’ and ‘dv=’ over and over again has been saved making this a great time saver as well as something that is less prone to making sign errors.

Try it on the following problem:

Find the integral of ∫ (6x³ + 3x² - 5x – 7) ex dx
	Dif
	
	Int

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


∫ (6x³ + 3x² - 5x – 7) ex dx =  

Concept Summary:


Integration by parts is analogous to the product rule of differentiation


The goal of integration by parts is either to get an integral that is simpler or one that repeats

Homework:  pg 480 – 482:  Day1:  3, 4, 7, 9, 36;         Day 2:  1, 14, 19, 51
Read:  Section 7.2
Section 7.2:  Trigonometric Integrals
SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Solve integrals involving trigonometric functions
Vocabulary:  None new
Key Concepts:
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Type I:  sinn x or cosn x, n is odd

· Keep one sin x or cos x or  for dx 

· Convert remainder with sin² x + cos² x = 1
Examples:
∫ sin3 x dx

     ∫ cos5 x dx 
Type II:  sinn x or cosn x, n is even
· Use half angle formulas:
sin² x =  ½(1 - cos 2x)

cos² x =  ½(1 + cos 2x) 
Examples:
∫ sin² x dx





∫ cos4 x dx 
Type III:  sinm x • cosn x, n or m is odd
· From odd power, keep one sin x or cos x, for dx
· Use identities to substitute

Example:
∫ sin3 x cos4 x dx

Type IV: :  sinm x • cosn x, n and m are even.
· Use half angle identities

Example:
∫ sin² x cos² x dx
Type V:  tann x or cotn x
· From power pull out tan2 x or cot2 x  and substitute cot2 x = csc2 x - 1  or  tan2 x = sec2 x – 1
Examples:
    ∫ cot4 x  dx





     ∫ tan5 x  dx
Type VI:  tanm x• secn x or cotm x • cscn x , where n is even
· Pull out sec2 x or csc2 x for dx
Example:
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Remember the following integrals: (when n=1 in the above)

∫

tan x dx = ln |sec x| + C

∫

sec x dx = ln |sec x + tan x| + C


Examples:
    ∫ sin² x  dx








(check the double angle formula!)

    ∫ tan5 x  dx







(check your work from previous page!)

Homework – Problems:  pg 488-489, 
Day 1:  1, 2, 5, 9, 10





Day 2:  3, 7, 11, 14, 17

                       Read:  Section 7.3
Section 7.3:  Trigonometric Substitution
SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Use trigonometric identities to simply certain “hard” integrals
Vocabulary:  None
Key Concept:


[image: image25.emf]Table of Trigonometric Substitutions

Expression Substitution Trig Identity

a² - x²

x = a sin θ

-π/2 ≤ θ ≤ π/2

1 - sin² θ = cos² θ

a² + x²

x = a tan θ

-π/2 ≤ θ ≤ π/2

1 + tan² θ = sec² θ

x² - a²

x = a sec θ

0 ≤ θ ≤ π/2    or    π ≤ θ ≤ 3π/2

sec²θ – 1 = tan² θ


Example 1: ( (4 - x²
Example 2: ( x² (4-x2)-3/2
Example 3: ( 1/(x² + 9)
Example 4: ( (4 + x²

Example 5: ( 1/(x²(9 + 9x²)
Example 6: ( ((x² - 16)/x
Application Problem:  Find the area under the curve y = (16 - 4x² between x = 0 and x = 2.
Homework – Problems:  pg 494 – 495 Day 1:            1, 5, 9, 17 
                                                                 Day 2:            6, 13, 22, 33
                       Read:  Section 7.4
Section 7.4:  Integration of Rational Functions by Partial Fractions
SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Solve integral problems using the technique of partial fractions
Vocabulary:   None new
Key Concept: 
Type I – Improper: (degree of numerator ≥ degree of denominator) Start with long division
Examples: 
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Type II – Proper: decompose into partial fractions

Example: 
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[image: image29.emf]Partial Fractions Example

3x –1

Example:     -------------- dx

x²-x –6

I)factor denominator

II)rewrite fraction

III)multiply through by common denominator 

IV)solve one factor and substitute 

V)repeat with remaining factor(s

VI)substitute A and B and integrate 

∫

x² -x –6 = (x –3) (x –2)

3x –1         A              B

-------------=  ---------+ ----------

x² –x –6       (x –3)     (x –2)

3x –1  = A(x+ 2) + B(x–3)

when x = -2 then B = 7/5

when x = 3 then A = 8/5

8        1              7       1

-- -------- dx+ -- --------- dx

5     (x-3)           5    (x + 2)

= (8/5) ln|x-3| + (7/5) ln|x+2| + C

∫ ∫
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(If a factor is repeated, i.e. 
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Type III – Variations of Arctan: 
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Examples:
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Type IV – Variations of Arcsin: 
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Homework – Problems:  pg 504-505,  Day 1:  1, 2, 3, 7
                                                                Day 2:  4, 10, 19, 40
                       Read:  Section 7.5
Section 7.5:  Strategy for Integration
SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Nothing at this time
Vocabulary:  


none new
Key Concept:

Not Covered at this Time


[image: image43.emf]Strategy for Integration

• Know basic integration table (pg 506)

• Simplify the Integrand if Possible

• Look for an Obvious Substitution

• Classify the Integrand According to its Form

– Trigonometric Functions

– Rational Functions

– Integration by Parts

– Radicals

• Try Again

– Basically Only Two Methods of Integration

•

Substitution

•

Parts

– Try Algebraic Manipulation


Homework – Problems:  none
                       Read:  section 7.6
Section 7.6:  Integration Using Tables and Computer Algebra Systems

SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Solve problems involving density

Vocabulary:  


None

Key Concept:   

Not Covered at this Time

Homework – Problems:  none
                       Read:  read 7.7
Section 7.7:  Approximate Integration
SOL:  APC.16:  The student will compute an approximate value for a definite integral.  This will include numerical calculations using Riemann Sums and the Trapezoidal Rule.

Objectives:  Students will be able to:  


Approximate integrals using Riemann Sums and the Trapezoidal Rule
Vocabulary:  


None
Key Concept:   

Some elementary functions do not possess antiderivatives that are elementary functions, i.e. 
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.  Approximation techniques must be used.  We have done approximations using rectangles, primarily with left endpoints, right endpoints and midpoints.  Another technique for approximations is the trapezoidal rule.
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What is the area of the first trapezoid?
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Now add each trapezoid together to get:

Examples: 

Use the trapezoidal rule with n = 4 to approximate
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Use the trapezoidal rule with n = 5 to approximate
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Pond Problem:  Use the trapezoidal rule to estimate the surface area of the pond.  Suppose measurements are taken every 20 feet.

The trapezoidal rule averages the results of the left endpoint and right endpoint rules.  

If f is an increasing function: 
left end ≤ 
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If f is a decreasing function: 
right end ≤ 
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If the graph of f is concave down, the trapezoidal rule underestimates the area; if it is concave up, it overestimates the area.

How far off is our estimate?  What is the error?

Error Approximation & the Trapezoidal Rule:


Two types of problems 1) find the maximum error and 2) find 
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Examples: 

Use the error formula to find the maximum possible error in approximating the integral, with n = 4.
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Use the error formula to find n so that the error in the approximation of the definite integral is less than .00001.
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Homework – Problems:  pg 527 – 529:  probs:  7, 8, 9
                       Read:  section 7.8
Section 7.8:  Improper Integrals

SOLs:  APC.13:  The student will find the indefinite integral of algebraic, exponential, logarithmic, and trigonometric functions.  The special integration techniques of substitution (change of variables) and integration by parts will be included.

Objectives:  Students will be able to:  


Solve improper integrals
Vocabulary:  


None

Key Concept:   

Infinite Limits of Integration

Type I: One infinite limit

1. 
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2. 
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You must rewrite these as limits:
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If the limit exists, then the integral is said to converge to the limit value.  If the limit fails to exist, then the integral is said to diverge.

Type II: Two infinite limits – you must rewrite this as the sum of 2 limits:
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3. 
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4. 
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Infinite Discontinuities

Type I: If 
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 If 
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Type II: If 
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Comparison Theorem: Suppose that  f(x) and g(x) are continuous functions with f(x) ≥ g(x) for x ≥ a.

a. If 
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See page 530.

Homework – Problems:  example problem 2 and 4
                       Read:  review and study chapter 7
Chapter 7:  Review

SOLs:  None
Objectives:  Students will be able to:  


Know material presented in Chapter 7
Vocabulary:  None new
Key Concept: 
The book review problems are on page 534.

Homework – Problems:  pg 468-469:  2, 7, 13, 25, 27, 30
                       Read:  Study for Chapter 7 Test

Non-Calculator Multiple Choice

1.  
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A.  ln|(x-3)(x+4)|+c

B.  (1/7)ln|(x-3)(x+4)|+c

C.  
 EMBED Word.Picture.8  





D.  
 EMBED Word.Picture.8  



E.  none of these

8.  Which one of the following improper integrals diverges?
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E.  none of these

9.  
 EMBED Word.Picture.8  



A.  2/3

B.  3/2

C.  3

D.  1

E.  none of these

10.  
[image: image125.wmf]32

sincos

xxdx

=

ò



A.  
[image: image126.wmf]35

11

coscos

35

xxc

-+


B.  
[image: image127.wmf]43

1

sincos

12

xxc

+



C.  
[image: image128.wmf]46

11

sinsin

46

xxc

-+



D.  
[image: image129.wmf]35

11

coscos

35

xxc

-++


E.  
[image: image130.wmf]46

11

sinsin

46

xxc

-++


11.  Use the Trapezoidal Rule, with n = 4, to approximate 
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A.  -10.67
B.  10.67
C.  -10.00
D.  10.00
E.  -10.33

Free Response:  (1995-BC5)  Let 

 for 

  and let R be the region between the graph of f  and the x-axis. 
a. Determine whether region R has finite area.  Justify your answer using calculus. 

b. Determine whether the solid generated by revolving region R  about the y-axis has finite volume.  

       
Justify your answer using calculus. 

c. Determine whether the solid generated by revolving region R  about the x-axis has finite volume.  

       
Justify your answer using calculus. 

Answers   

1. A     

2. A     

3. B    

4. B     

5. C     

6. E     

7. D     

8. D     

9.  B     

10. D     

11. C  

Free Response:  

a.  The area integral is 
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 which is an improper integral.  
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.  Thus, the integral diverges and there is not finite area.  

b.  There is finite volume.  
[image: image134.wmf]11

00

1

222

xdxdx

x

ppp

æö

==

ç÷

èø

òò

.  

c.  There is infinite volume.  
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After Chapter 7 Test:

Homework – Problems:  None

                       Read:  Chapter 7 to see what’s coming next
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� EMBED Equation.3  ���





If f has a continuous second derivative on [a,b], then the error E in approximating � EMBED Equation.3  ��� by the trapezoidal rule is:


                                � EMBED Equation.3  ��� where a ≤ x ≤ b
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Integration by Parts

		Similar to the Product Rule in Differentiation





∫u dv = uv – ∫v du



Used to make integrals simplier





Strategies to use integration by parts

1) Use derivative to drive a polynomial function to zero

2) Reduce polynomials to get a u-substitution

3) Use derivative to get the original integral

	And the simplify using addition/subtraction








_1302873102.ppt


Table of Trigonometric Substitutions

		Expression		Substitution		Trig Identity

		a² - x²		x = a sin θ
-π/2 ≤ θ ≤ π/2		1 - sin² θ = cos² θ

		a² + x²		x = a tan θ
-π/2 ≤ θ ≤ π/2		1 + tan² θ = sec² θ

		x² - a²		x = a sec θ
 0 ≤ θ ≤ π/2    or    π ≤ θ ≤ 3π/2		sec²θ – 1 = tan² θ
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Trigonometric Reduction Formulas

∫

∫

∫

∫

Remember the following integrals: (when n=1 in the above)



    ∫ tan x dx = ln |sec x| + C



    ∫ sec x dx = ln |sec x + tan x| + C

		Expression		Reduction Formula

		∫ sinn x dx		        1                            n – 1 
 = -  --- sinn-1 x cos x + -------    sinn-2 x dx
        n                               n 

		∫ cosn x dx		        1                            n – 1 
 =    --- cosn-1 x sin x + -------    cosn-2 x dx
        n                               n 

		∫ tann x dx		           1                         
 =    ------- tann-1 x -    tann-2 x dx
        n - 1               

		∫ secn x dx		          1                               n - 2
 =    ------- secn-2 x tan x + -------    secn-2 x dx
        n - 1                            n - 1
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Strategies for Hard Trig Integrals

		Expression		Substitution		Trig
Identity

		sinn x or cosn x, n is odd		Keep one sin x or cos x or for dx 
Convert remainder		sin² x + cos² x = 1


		sinn x or cosn x, n is even 		Use half angle formulas: 		sin² x =  ½(1 – cos 2x)
cos² x =  ½(1 + cos 2x)

		sinm x • cosn x, n or m is odd 		From odd power, 
keep one sin x or cos x, for dx
Use identities to substitute		sin² x + cos² x = 1

		sinm x • cosn x, n & m are even 		Use half angle identities		sin² x =  ½(1 – cos 2x)
cos² x =  ½(1 + cos 2x)

		tann x or cotn x 		From power pull out tan2 x or cot2 x  and substitute using identities		cot2 x = csc2 x - 1  or  tan2 x = sec2 x – 1 

		tanm x• secn x or cotm x • cscn x , where n is even		Pull out sec2 x or csc2 x for dx		sec² θ – 1 = tan² θ
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Partial Fractions Example

                        3x – 1

Example:     --------------  dx

                      x² - x – 6

		 factor denominator





		 rewrite fraction





		 multiply through by common denominator 





		 solve one factor and substitute 





		 repeat with remaining factor(s 	 





		 substitute A and B and integrate 



	

	

∫

x² - x – 6 = (x – 3) (x – 2)

    3x – 1         A              B

------------- =  --------- + ----------

x² – x – 6       (x – 3)     (x – 2)

3x – 1  = A(x + 2) + B(x – 3)

when x = -2 then B = 7/5

when x = 3 then A = 8/5

8        1              7       1

--   --------  dx + --   ---------  dx 

5     (x-3)           5    (x + 2)





= (8/5) ln|x-3| + (7/5) ln|x+2| + C

∫

∫
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Strategy for Integration

		Know basic integration table (pg 506)

		Simplify the Integrand if Possible

		Look for an Obvious Substitution

		Classify the Integrand According to its Form

		Trigonometric Functions

		Rational Functions

		Integration by Parts

		Radicals

		Try Again

		Basically Only Two Methods of Integration

		Substitution

		Parts

		Try Algebraic Manipulation
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